Skip to content

For help, click the link below to get free database assistance or contact our experts for personalized support.

Update certificates

If a cert-manager is used, it should take care of updating the certificates. If you generate certificates manually, you should take care of updating them in proper time.

TLS certificates issued by cert-manager are short-term ones, valid for 3 months. They are reissued automatically on schedule and without downtime.

image

Check your certificates for expiration

  1. First, check the necessary secrets names (my-cluster-name-ssl and my-cluster-name-ssl-internal by default):

    $ kubectl get certificate
    

    You will have the following response:

    NAME                           READY   SECRET                         AGE
    my-cluster-name-ssl            True    my-cluster-name-ssl            49m
    my-cluster-name-ssl-internal   True    my-cluster-name-ssl-internal   49m
    

This command is available if you have cert-manager installed; if not, you can still check the necessary secrets names with kubectl get secrets command.

  1. Optionally you can also check that the certificates issuer is up and running:

    $ kubectl get issuer
    

    The response should be as follows:

    NAME                              READY   AGE
    my-cluster-name-psmdb-issuer      True    61m
    my-cluster-name-psmdb-ca-issuer   True    61m
    

    Again, this command is provided by cert-manager; if you don’t have it installed, you can still use kubectl get secrets.

    Note

    The presence of two issuers has the following meaning. The my-cluster-name-psmdb-ca-issuer issuer is used to create a self signed CA certificate (my-cluster-name-ca-cert), and then the my-cluster-name-psmdb-issuer issuer is used to create SSL certificates (my-cluster-name-ssl and my-cluster-name-ssl-internal) signed by the my-cluster-name-ca-cert CA certificate.

  2. Now use the following command to find out the certificates validity dates, substituting Secrets names if necessary:

    $ {
      kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.crt}' | base64 --decode | openssl x509 -noout -dates
      kubectl get secret/my-cluster-name-ssl -o jsonpath='{.data.ca\.crt}' | base64 --decode | openssl x509 -noout -dates
      }
    

    The resulting output will be self-explanatory:

    notBefore=Apr 25 12:09:38 2022 GMT notAfter=Jul 24 12:09:38 2022 GMT
    notBefore=Apr 25 12:09:38 2022 GMT notAfter=Jul 24 12:09:38 2022 GMT
    

Update certificates without downtime

If you don’t use cert-manager and have created certificates manually, you can follow the next steps to perform a no-downtime update of these certificates if they are still valid.

Note

For already expired certificates, follow the alternative way.

Having non-expired certificates, you can roll out new certificates (both CA and TLS) with the Operator as follows.

  1. Generate a new CA certificate (ca.pem). Optionally you can also generate a new TLS certificate and a key for it, but those can be generated later on step 6.

  2. Get the current CA (ca.pem.old) and TLS (tls.pem.old) certificates and the TLS certificate key (tls.key.old):

    $ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.ca\.crt}' | base64 --decode > ca.pem.old
    $ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.crt}' | base64 --decode > tls.pem.old
    $ kubectl get secret/my-cluster-name-ssl-internal -o jsonpath='{.data.tls\.key}' | base64 --decode > tls.key.old
    
  3. Combine new and current ca.pem into a ca.pem.combined file:

    $ cat ca.pem ca.pem.old >> ca.pem.combined
    
  4. Create a new Secrets object with old TLS certificate (tls.pem.old) and key (tls.key.old), but a new combined ca.pem (ca.pem.combined):

    $ kubectl delete secret/my-cluster-name-ssl-internal
    $ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=tls.pem.old --from-file=tls.key=tls.key.old --from-file=ca.crt=ca.pem.combined --type=kubernetes.io/tls
    
  5. The cluster will go through a rolling reconciliation, but it will do it without problems, as every node has old TLS certificate/key, and both new and old CA certificates.

  6. If new TLS certificate and key weren’t generated on step 1, do that now.

  7. Create a new Secrets object for the second time: use new TLS certificate (server.pem in the example) and its key (server-key.pem), and again the combined CA certificate (ca.pem.combined):

    $ kubectl delete secret/my-cluster-name-ssl-internal
    $ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-key.pem --from-file=ca.crt=ca.pem.combined --type=kubernetes.io/tls
    
  8. The cluster will go through a rolling reconciliation, but it will do it without problems, as every node already has a new CA certificate (as a part of the combined CA certificate), and can successfully allow joiners with new TLS certificate to join. Joiner node also has a combined CA certificate, so it can authenticate against older TLS certificate.

  9. Create a final Secrets object: use new TLS certificate (server.pmm) and its key (server-key.pem), and just the new CA certificate (ca.pem):

    $ kubectl delete secret/my-cluster-name-ssl-internal
    $ kubectl create secret generic my-cluster-name-ssl-internal --from-file=tls.crt=server.pem --from-file=tls.key=server-key.pem --from-file=ca.crt=ca.pem --type=kubernetes.io/tls
    
  10. The cluster will go through a rolling reconciliation, but it will do it without problems: the old CA certificate is removed, and every node is already using new TLS certificate and no nodes rely on the old CA certificate any more.

Update certificates with downtime

If your certificates have been already expired (or if you continue to use the Operator version prior to 1.9.0), you should move through the pause - update Secrets - unpause route as follows.

  1. Pause the cluster in a standard way, and make sure it has reached its paused state.

  2. If cert-manager is used, delete issuer and TLS certificates:

    $ {
      kubectl delete issuer/my-cluster-name-psmdb-ca-issuer issuer/my-cluster-name-psmdb-issuer 
      kubectl delete certificate/my-cluster-name-ssl certificate/my-cluster-name-ssl-internal
      }
    
  3. Delete Secrets to force the SSL reconciliation:

    $ kubectl delete secret/my-cluster-name-ssl secret/my-cluster-name-ssl-internal
    
  4. Check certificates to make sure reconciliation have succeeded.

  5. Unpause the cluster in a standard way, and make sure it has reached its running state.

Modify certificates generation

There may be reasons to tweak the certificates generation, making it better fit some needs. Of course, maximum flexibility can be obtained with manual certificates generation, but sometimes slight tweaking the already automated job may be enough.

The following example shows how to increase CA duration with cert-manager for a cluster named cluster1:

  1. Delete the psmdb Custom Resource in the proper namespace (this will cause deletion of all Pods of the cluster, but later you will recreate the cluster using the same deploy/cr.yaml flie from which it was originally created).

    Note

    you may need to make sure that finalizers.percona.com/delete-psmdb-pvc is not set if you want to preserver Persistent Volumes with the data.

    Deletion command should look as follows:

    $ kubectl -n <namespace_name> delete psmdb cluster1
    
  2. Deletion takes time. Check that all Pods disappear with kubectl -n <namespace_name> get pods command, and delete certificate related resources:

    $ kubectl -n <namespace_name> delete issuer.cert-manager.io/cluster1-psmdb-ca-issuer issuer.cert-manager.io/cluster1-psmdb-issuer certificate.cert-manager.io/cluster1-ssl-internal certificate.cert-manager.io/cluster1-ssl certificate.cert-manager.io/cluster1-ca-cert secret/cluster1-ca-cert secret/cluster1-ssl secret/cluster1-ssl-internal
    
  3. Create your own custom CA:

    my_new_ca.yml
    apiVersion: cert-manager.io/v1
    kind: Issuer
    metadata:
      name: cluster1-psmdb-ca-issuer
    spec:
      selfSigned: {}
    ---
    apiVersion: cert-manager.io/v1
    kind: Certificate
    metadata:
      name: cluster1-ca-cert
    spec:
      commonName: cluster1-ca
      duration: 10000h0m0s
      isCA: true
      issuerRef:
        kind: Issuer
        name: cluster1-psmdb-ca-issuer
      renewBefore: 730h0m0s
      secretName: cluster1-ca-cert
    

    Apply it as usual, with the kubectl -n <namespace_name> apply -f my_new_ca.yml command.

  4. Recreate the cluster from the original deploy/cr.yaml configuration file:

    $ kubectl -n <namespace_name> apply -f deploy/cr.yaml
    
  5. Verify certificate duration in usual way.


Last update: 2025-04-25